Diffusion Operator and Spectral Analysis for Directed Hypergraph Laplacian
نویسندگان
چکیده
In spectral graph theory, the Cheeger’s inequality gives upper and lower bounds of edge expansion in normal graphs in terms of the second eigenvalue of the graph’s Laplacian operator. Recently this inequality has been extended to undirected hypergraphs and directed normal graphs via a non-linear operator associated with a diffusion process in the underlying graph. In this work, we develop a unifying framework for defining a diffusion operator on a directed hypergraph with stationary vertices, which is general enough for the following two applications. 1. Cheeger’s inequality for directed hyperedge expansion. 2. Quadratic optimization with stationary vertices in the context of semi-supervised learning. Despite the crucial role of the diffusion process in spectral analysis, previous works have not formally established the existence of the corresponding diffusion processes. In this work, we give a proof framework that can indeed show that such diffusion processes are well-defined. In the first application, we use the spectral properties of the diffusion operator to achieve the Cheeger’s inequality for directed hyperedge expansion. In the second application, the diffusion operator can be interpreted as giving a continuous analog to the subgradient method, which moves the feasible solution in discrete steps towards an optimal solution. ∗Department of Computer Science, the University of Hong Kong. {hubert,zhtang,xwwu,czzhang}@cs.hku.hk ar X iv :1 71 1. 01 56 0v 1 [ cs .D M ] 5 N ov 2 01 7
منابع مشابه
Spectral Properties of Laplacian and Stochastic Diffusion Process for Edge Expansion in Hypergraphs
There has been recent work [Louis STOC 2015] to analyze the spectral properties of hypergraphs with respect to edge expansion. In particular, a diffusion process is defined on a hypergraph such that within each hyperedge, measure flows from nodes having maximum weighted measure to those having minimum. The diffusion process determines a Laplacian, whose spectral properties are related to the ed...
متن کاملA New Determinant Expression of the Zeta Function for a Hypergraph
Recently, Storm [10] defined the Ihara-Selberg zeta function of a hypergraph, and gave two determinant expressions of it by the Perron-Frobenius operator of a digraph and a deformation of the usual Laplacian of a graph. We present a new determinant expression for the Ihara-Selberg zeta function of a hypergraph, and give a linear algebraic proof of Storm’s Theorem. Furthermore, we generalize the...
متن کاملSTAR - Laplacian Spectral Kernels and Distances for Geometry Processing and Shape Analysis
In geometry processing and shape analysis, several applications have been addressed through the properties of the spectral kernels and distances, such as commute-time, biharmonic, diffusion, and wave distances. Our survey is intended to provide a background on the properties, discretization, computation, and main applications of the Laplace-Beltrami operator, the associated differential equatio...
متن کاملEla Spectral Properties of Oriented Hypergraphs
An oriented hypergraph is a hypergraph where each vertex-edge incidence is given a label of +1 or −1. The adjacency and Laplacian eigenvalues of an oriented hypergraph are studied. Eigenvalue bounds for both the adjacency and Laplacian matrices of an oriented hypergraph which depend on structural parameters of the oriented hypergraph are found. An oriented hypergraph and its incidence dual are ...
متن کاملSpectral Clustering with Epidemic Diffusion
Spectral clustering is widely used to partition graphs into distinct modules or communities. Existing methods for spectral clustering use the eigenvalues and eigenvectors of the graph Laplacian, an operator that is closely associated with random walks on graphs. We propose a spectral partitioning method that exploits the properties of epidemic diffusion. An epidemic is a dynamic process that, u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.01560 شماره
صفحات -
تاریخ انتشار 2017